翻訳と辞書
Words near each other
・ Chernyshev (crater)
・ Chernyshev Division
・ Chernyshevsk
・ Chernyshevskaya
・ Chernyshevskoye
・ Chernyshevsky (disambiguation)
・ Chernyshevsky (inhabited locality)
・ Chernyshevsky District
・ Chernyshevsky, Sakha Republic
・ Chernyshkovsky
・ Chernyshkovsky (urban-type settlement)
・ Chernyshkovsky District
・ Chernyshyov
・ Chernytsia
・ Chernytskyi
Chern–Simons form
・ Chern–Simons theory
・ Chern–Weil homomorphism
・ Chero
・ Cheroh
・ Cherohala Skyway
・ Cherok Tok Kun
・ Cherokee
・ Cherokee (company)
・ Cherokee (disambiguation)
・ Cherokee (Europe song)
・ Cherokee (Ray Noble song)
・ Cherokee (rocket)
・ Cherokee (Unicode block)
・ Cherokee (web server)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Chern–Simons form : ウィキペディア英語版
Chern–Simons form
In mathematics, the Chern–Simons forms are certain secondary characteristic classes. They have been found to be of interest in gauge theory, and they (especially the 3-form) define the action of Chern–Simons theory. The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose. See
==Definition==
Given a manifold and a Lie algebra valued 1-form, \bold over it, we can define a family of p-forms:
In one dimension, the Chern–Simons 1-form is given by
: (\bold ).
In three dimensions, the Chern–Simons 3-form is given by
: \left(\bold\wedge\bold-\frac\bold\wedge\bold\wedge\bold\right ).
In five dimensions, the Chern–Simons 5-form is given by
: \left(\bold\wedge\bold\wedge\bold-\frac\bold\wedge\bold\wedge\bold\wedge\bold +\frac\bold\wedge\bold\wedge\bold\wedge\bold\wedge\bold \right )
where the curvature F is defined as
:\bold = d\bold+\bold\wedge\bold.
The general Chern–Simons form \omega_ is defined in such a way that
:d\omega_= \left( F^ \right),
where the wedge product is used to define ''Fk''. The right-hand side of this equation is proportional to the ''k''-th Chern character of the connection \bold.
In general, the Chern–Simons p-form is defined for any odd ''p''. See also gauge theory for the definitions. Its integral over a ''p''-dimensional manifold is a global geometric invariant, and is typically gauge invariant modulo addition of an integer.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Chern–Simons form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.